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Field data often include multiple observations taken from the same individual. In order to avoid
pseudoreplication, it is commonplace to aggregate data, generating a mean score per individual, and
then using these aggregated data in subsequent analyses. Aggregation, however, can generate
problems of its own. Not only does it lead to a loss of information, it can also leave analyses vulnerable to
the “ecological fallacy”: the drawing of false inferences about individual behavior on the basis of
population level (“ecological”) data. It can also result in Simpson’s paradox, where relationships seen at
the individual level can be completely reversedwhen analyzed at the aggregate level. These phenomena
have been documented widely in the medical and social sciences but tend to go unremarked in
primatological studies that rely on observational data from the field. Here, we provide a conceptual
guide that explains how and why aggregate data are vulnerable to the ecological fallacy and Simpson’s
paradox, illustrating these points using data on baboons. We then discuss one particular analytical
approach, namely multi-level modeling, that can potentially eliminate these problems. By highlighting
the issue of the ecological fallacy, and increasing awareness of how datasets are often organized into a
number of different levels, we also highlight the manner in which researchers can more positively
exploit the structure of their datasets, without any information loss. These analytical approaches may
thus provide greater insight into behavior by permitting more thorough investigation of interactions
and cross-level effects. Am. J. Primatol. 77:727–740, 2015. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION
Direct observation of individual animals’ behav-

ior forms the cornerstone of much research in
ethology and behavioral ecology. A variety of
systematic sampling methods are used to collect
such data, including instantaneous scan sampling,
focal animal sampling, and one-zero sampling [Alt-
mann, 1974, 1984; Martin & Bateson, 1993]. While
there has been vigorous debate regarding the best
means to produce an unbiased record of behavioral
activity [e.g., Altmann, 1974; Ary & Suen, 1983;
Baulu & Redmond, 1978; Bernstein, 1991; Fragaszy
et al., 1992; Rhine & Linville, 1980; Simpson &
Simpson, 1977; Suen & Ary, 1984], there has been
much greater consensus on how to deal with data
once they have been collected. At one time, it was
common for researchers to simply pool repeated
samples of behavior taken from several individuals
into a single dataset for analysis. As Machlis et al.
[1985] pointed out, however, this form of data pooling

violates a number of fundamental statistical as-
sumptions such as the need for independent

Contract grant sponsor: The Netherlands Organisation for
Scientific Research; contract grant number: 451.10.032; con-
tract grant sponsor: The Netherlands Organisation for
Scientific Research; contract grant sponsor: Natural Sciences
and Engineering Research Council of Canada (NSERC);
contract grant sponsor: National Research Foundation
(NRF); contract grant sponsor: NSERC; contract grant sponsor:
Canada Research Chairs Program

�Correspondence to: Department of Social and Organizational
Psychology, VU University Amssterdam, Transitorium Build-
ing (1B17), Van der Boechorststraat 1, 1081BT Amsterdam,
The Netherlands. E-mail: t.v.pollet@vu.nl

Received 8 January 2014; revised 18 February 2015; revision
accepted 1 March 2015

DOI: 10.1002/ajp.22405
Published online 24 March 2015 in Wiley Online Library
(wileyonlinelibrary.com).

American Journal of Primatology 77:727–740 (2015)

© 2015 Wiley Periodicals, Inc.



observations, i.e., pooling of this kind introduces
pseudoreplication [for a similar, more recent plea to
avoid pseudoreplication, within the field of neurosci-
ence, see Aarts et al. 2014]. To avoid this “pooling
fallacy”, Martin &Bateson [1993] recommended that
data should be aggregatedwithin individuals to yield
a single data point for each subject, and that these
values should then be subject to statistical analysis.
Although aggregating data avoids issues of pseudor-
eplication, generating a mean, median, proportion or
total score at the individual level can also create
problems of its own.

First, as most of us are aware, data aggregation
leads to a loss of information; something we can
easily lose sight of, however, in our efforts to avoid
sample size inflation. Second, aggregated data are
vulnerable to the “ecological fallacy.” This is a term
used in the social sciences to capture a phenomenon
where data at the level of the group or population
(i.e., data at the so-called “ecological” level) are used
to draw inferences about individual traits and
activities. This is a fallacy because the relationships
detected at the aggregate level do not necessarily
translate to similar relationships at the individual
level. We are all familiar with this kind of reasoning
to at least some extent: it is obvious to us all that,
when we are told that people in a population have 2.4
children on average, this does not mean that there
will be individuals who have this exact number of
offspring.

It could be argued that any problems related to
aggregation (or the lack of it) are largely a thing of the
past, and most primatologists now follow Janson’s
[2012] advice to use multi-level models that can deal
with the issue of multiple observations per individu-
al. However, such a viewwould be at oddswith recent
pleas from fields as distinct as, psychology [Kievit
et al., 2013; Pollet et al., 2014], epidemiology [Tu
et al., 2008], measurement science [D’Errico, 2014],
evolutionary ecology [Scheiner et al., 2000], and
those involved in meta-analyses [Cooper & Patall,
2009; Hanley & Th�eriault, 2000], all of which argue
that the ecological fallacy and the Simpson’s paradox
are more than just statistical curiosities, and
constitute seriously under-appreciated problems of
analysis and interpretation. Given that behavioral
primatology is, traditionally, a rather less mathe-
matical and statistical discipline than many of the
aforementioned fields, we strongly suspect that
problems of aggregation may go unrecognized in
the discipline of primatology. This is especially likely
given that a widely used textbook in animal behavior
by Martin & Bateson [1993] specifically recommends
aggregation in order to avoid the pooling fallacy,

It is also worth pointing out that, even if
unnecessary aggregation is rare, the fact that it
persists at all will be problematic if it leads others to
generate and test hypotheses based on inappropriate
inferences; even a single paper can result in problems

down the line if the findings of such a paper prove
influential. The current review therefore aims to
provide a non-technical introduction to issues relat-
ing to data aggregation, particularly the ecological
fallacy and Simpson’s paradox for those unfamiliar
with such problems, as well as providing a useful
summary of alternative analytical approaches for
those who have already moved away from simple
forms of data aggregation [see also Janson, 2012;
Schielzeth & Forstmeier, 2009; Waller et al., 2013].

In what follows, we first provide a general
reminder of the problems associated with data
aggregation—namely loss of information, reliability,
and power in statistical analyses—before discussing
how aggregation can generate both the ecological
fallacy and Simpson’s paradox in behavioral data.
We then provide a brief conceptual outline of
analytical strategies that avoid aggregation, and so
lower the likelihood of committing the ecology
fallacy. Most importantly—and more positively—
these techniques possess the added advantage of
allowing field researchers to exploit their data to its
maximum potential.

Loss of Information Through Aggregation
and Implications for Reliability

Data aggregation inevitably results in a loss of
valuable information whenever multiple observa-
tions for a given animal are reduced to a single value
(proportions/means/ratios). Of course, if the question
of interest concerns an aggregate measure then this
is a perfectly appropriate way to test the relevant
predictions (e.g., Does animal X groom substantially
more than other animals in the group?). In many
cases, however, ignoring variation means ignoring
information. Most people who conduct behavioral
studies fully recognize that attending only to the
central tendency and ignoring the variance can
generate a misleading impression of how consistent-
ly an animal performs a certain behavior: animal X
might groom on average more than other group
members, but perhaps only under certain circum-
stances. Thus, although the “aggregate” hypothesis
might be about individual’s X grooming behavior, we
can gain further insight by investigating matters at
the level of individual observations. To give the most
extreme example, if animal X’s average grooming
time is entirely a consequence of a single event then
this clearly suggests something quite different froma
situation in which animal X consistently spends
more time grooming than all other animals across a
series of time points.

Similarly, if we calculate a mean score on some
variable for animals X and Y and obtain a score of 50
for both, we have succeeded in making them
“identical” for the purposes of further statistical
analysis based on those means, but if animal X’s
score is based on four observations of 0, 0, 100, and
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100, then, clearly, it is behaving very differently to
animal Y who scores 50 across the board. That is,
aggregating the data smooths out the idiosyncrasies
in animals’ behavior in ways that may obscure the
variety of behavioral strategies present. Reporting a
measure of variation (such as the standard deviation)
in addition to the central tendency obviously
alleviates this problem to some extent. Nevertheless,
it remains the case that such measures of variation
may not be included in particular kinds of analysis.

Conversely, ignoringwithin-individual variation
can, in some cases, suggest that a phenomenon is
more robust than is actually the case. For example,
as shown in the schematic graph presented in
Figure 1A, aggregate values can provide a very
neat correlation, and one might be tempted to
conclude that there is a strong relationship between
two measures. An examination of the non-
aggregated values, as in Figure 1B, however,
generates a quite different impression: the variation

observed within each animal far exceeds that
between animals, and the relationship between the
two variables is correspondingly weaker (see Fig. 1A,
B). Pollet et al., [2014], using a human example,
found that the correlation between two variables
(parasite stress and personality) at the aggregate
level (country) is close to 20 times stronger than the
correlation between those two variables at the lower,
individual level. Similarly the statistical association
between two variables within individuals might be
muchweaker than the association between those two
variables between individuals.

Aggregation can also lead to a loss of information
with respect to the reliability of estimates. For
example, discovering that animal X performs a
certain behavior 30% of the time based on six
observations is very different from discovering that
animal Y also performs the behavior at an identical
rate but that, in this case, the estimate is based on a
sample of 600 observations. The degree of confidence

Fig. 1. A schematic overview of problems that may arise due to data aggregation. Simulated data for three monkeys (A, B, C; different
colors); dotted lines reflect correlations through aggregated data; colored lines reflect individual level correlations. Aggregated datamay
(A) result in strong correlations, despite the fact that (B) individual variability is very high, and largely swamps the between-
animal effect. The ecological fallacy ariseswhen (C) aggregate data show a different relationship to data at the individual level, such that
an inference about individual behavior based on aggregate data does not, in fact, correspond to actual patterns of individual behavior.
The reversal in direction between population and individual levels of data shown here means that this example also represents
Simpson’s paradox. Using aggregate datamay also prevent interaction effects from being (properly) tested. It is possible, for example, for
the production of a certain behavior to depend on an animal’s state (D). Calculating a single mean (or other aggregate) score for each
individual (here, for instance, the percentage of time in a certain state; e.g., 15/23¼65% measurements having Status 1) prevents the
underlying variable to be associated with the other variables of interest, and hence there is no possibility of testing for an interaction
effect. See text for further explanation; in the text we use grooming as our independent variable, aggressive behavior as the dependent
variable, and reproductive state as the “Status” variable.
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we can place in the inference that animal Y really
does spend one third of its time performing the
behavior compared to animal X is much higher in the
case of the latter. Again, reporting additional
information, such as sample size, can alert readers
to the existence of inter-individual variability, but
this does not always help if onlymean values are then
used in subsequent analysis. Given this, it is not
difficult to see that aggregation has statistical
implications: when data are aggregated, using only
one [estimated] value per individual, all individuals
are given equal weight in the analyses, despite the
fact that there are much more reliable estimates
available for some animals than others. One solution
is simply to exclude data from animals with
relatively few observations and attempt to increase
reliability that way. The problem here is that the
price of increasing the apparent reliability of the data
is, again, the loss of potentially valuable information.

Finally, aggregating data may result in lower
statistical power. If there are 10 observations for
each of eight individuals, aggregating the data
reduces the sample size for analysis to 8 data points,
rather than the 80 that were actually collected.
Observational field studies, particularly those on
primates, often have quite small sample sizes to
begin with [in terms of the number of animals and
groups sampled], and aggregating data can lead to
significance tests that are severely underpowered
and, quite simply, unable to detect an effect even if
one exists.

Given that differences in behavioral variability
are highly relevant to particular research questions,
especially in highly behaviorally flexible species like
primates, aggregation can thus be a significant
problem because it inevitably treats variability as
though it were merely measurement error or
statistical noise. The emphasis placed on avoiding
pseudoreplication may have resulted, therefore, in
the drawbacks of data aggregation being overlooked.
Even worse perhaps, the emphasis on aggregation as
a cure for the statistical errors generated by
pseudoreplication has obscured the fact that aggre-
gation in itself can lead to errors of statistical
inference. Specifically, it increases the likelihood of
falling prey to the ecological fallacy, and we now turn
to explaining how and why this happens.

Inappropriate Inferences: the Ecological
Fallacy

The first formal demonstration of the Ecological
Fallacy (EF) was by Robinson [1950], although it
should be noted that others, most notably Thorndike
[1939], had previously pointed to similar issues.
Robinson [1950] was, however, the first to provide a
detailed mathematical demonstration of how and
why relationships at the individual level could differ
in magnitude from those at different levels of

aggregation [e.g., state level, country level] [see
also: Menzel, 1950; Selvin, 1958; Subramanian et al.,
2009; Te Grotenhuis et al., 2011; van de Pol &
Wright, 2009]. In essence, the fallacy is a numerical
phenomenon that arises because variability around
the aggregate means is substantially different from
the variability seen at the individual level [see
Piantadosi et al., 1988]. The ecological fallacy has
been demonstrated in a variety of fields within the
social sciences (e.g., criminology: [Dutton, 1994];
political science: [Seligson, 2002]; psychology: [Yam-
marino & Markham, 1992]; educational sciences:
[Connolly, 2006]) and medicine (e.g., Pearce, 2000;
Portnov et al., 2006; Yip & Liu, 2006).

A special case of the fallacy is known as
Simpson’s paradox (SP) [Simpson, 1951], although
Pearson et al. [1899] and most notably Yule [1900,
1903] pointed to this phenomenon earlier [Good &
Mittal, 1987], hence it also known as the Yule–
Simpson effect, the reversal paradox and the
amalgamation paradox [see Pearl, 2014 for review].
Here, the direction of a relationship within a number
of individual groups is reversed as a consequence of
conducting the same analysis at the level of the
population. Robinson’s [1950] classic demonstration
of the EF, where he showed how a positive relation-
ship between literacy rates and immigration across
US states (i.e., the more immigrants present, the
higher the state’s literacy level) was reversed at the
level of the individual (i.e., an immigrant to the US
was, as one might expect, actually less likely to be
literate in English than an American citizen) was,
therefore, also a demonstration of Simpson’s para-
dox. In some instances, Simpson’s paradox arises for
the samenumerical reasons as themore general form
of the ecological fallacy, but it can also occur due to
the presence of a confounding third variable (see also
Cooper & Patall [2009] for discussion and for more
technical information on the ecological fallacy and
Simpson’s paradox: see e.g., [Blyth, 1972; Freedman,
1999; Greenland & Robins, 1994; Pearl, 2014;
Piantadosi et al., 1988]).

The ecological fallacy and Simpson’s paradox are
relevant to behavioral researchers because, when
sample data are aggregated to give a single score for
each individual, they become vulnerable to the
problems identified above, and for the same reasons.
These problems appear to be overlooked in the
context of behavioral studies [although Simpson’s
paradox is more widely recognized in some areas of
evolutionary biology [e.g., Allison & Goldberg, 2002;
Nee et al., 1991,1996; Scheiner et al., 2000; van dePol
& Wright, 2009].

Intuitively, it might seem odd to suggest that
behavioral data collected from individuals are
vulnerable to the ecological fallacy. Given that
most behavioral studies are focused at the individual
level, rather than at the “ecological” level of the
population, it would seem that, almost by definition,
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the ecological fallacy should not apply: indeed,
aggregating data points to give a single score per
individual level seems both logical and statistically
legitimate. A simple example can demonstrate that
this impression is mistaken.

Consider a study of baboons, where the research
question is concerned with the relationship between
grooming and aggression. When each baboon is
considered individually, there is a relationship found
such that, when an animal receives more grooming
from another monkey, it will display less aggression
towards that monkey directly after the grooming
bout. Thus, a longer bout of grooming decreases
subsequent aggression. The monkeys in the group
also differ, however, in the absolute amount of time
that they devote to these activities: monkey A, on
average, spends the least amount of time being
groomed, and shows the lowest frequency of aggres-
sion after grooming, monkey B falls in the middle,
and engages in a moderate amount of both grooming
and aggression, whilemonkeyC is groomed themost,
and also displays the highest levels aggression (see
Fig. 1C). Calculating a single mean score for each
animal and then using this score for further analysis
will produce a positive relationship between groom-
ing and aggression across animals, as the line on the
graph indicates (Fig. 1C). This, then, is an exact
reversal of the relationship documented for each
individual monkey. Concluding on the basis of the
aggregate-level results that higher levels of groom-
ing are associated with higher levels of aggression
within individuals, would therefore be an instance of
the ecological fallacy. Indeed, in this case, it would be
particularly misleading because the relationship is
reversed, and it is also an example of Simpson’s
paradox. In effect, the results of this analysis would
describe precisely how our animals do not behave,
rather than how they do.

It is important to note once again that we are not
suggesting that aggregate analyses have no value or
are inherently flawed. Rather, our point is that one
needs to be careful about the kinds of conclusions one
can draw from such data, given the nature of the
research questions asked. In this baboon example, it
would be appropriate to use the aggregate data to
conclude that the overall duration with which
baboons engage in these behaviors tends to rise in
parallel: that is, the longer the duration of the
grooming bout, on average, the more aggression is
displayed towards other baboons, on average, even
though we cannot infer how these are connected
within individuals.

One potential criticism here is that the ecological
fallacy as described above is a trivial phenomenon.
Intuitively, onemight expect there to be a high level of
correspondence between aggregate and lower-
level data, in which case there should be only a remote
possibility that relationships at lower levels would be
weakened, lost or reversed when these are explored

using higher-level aggregate data. In other words, any
bias should be minimal. There are two points to make
here. First, Firebaugh [1978] has shown that, for
regression models with aggregated data, a lack of bias
is the exception rather than the rule: only in the
exceptional case when the pooled mean of the
independent variable (X) has no effect on the (non-
aggregated, lower level) dependentvariableY,with the
(non-aggregated lower level) variable X controlled in
the analyses, can we expect there to be no bias in the
regression model [also see Sheppard, 2003]. Second,
although a close correspondence between different
levels of analysis is theoretically plausible [see Open-
shaw, 1984], empirically, it need not always hold true.
In many circumstances it may therefore be dangerous
to make this assumption, given that it can lead to
inaccurate inferences being drawn from the data.

The extent to which the ecological fallacy occurs,
andwhether it is problematic (because, for example, it
leads to a reversal in the direction of a relationship),
remains largely unknown ([Openshaw, 1984] but see
[Brand et al., 2010; Brand & Bradley, 2012; Pianta-
dosi et al., 1988]). Several cases have, however, been
discussed in epidemiology [e.g., Berlin et al., 2002;
Berhane et al., 2004; Greenland & Robins, 1994;
Greenland, 2001; Pearce, 2000; Portnov et al., 2006;
Richardson et al., 1987] and the social sciences [e.g.,
Connolly, 2006;Dutton, 1994; Selvin, 1958;Yip&Liu,
2006]. To get a sense ofwhether such effects are likely
to be found in observational datasets common to
behavioral studies, we conducted an exploratory
analysis on data drawn from SPH and LB’s long-
term study of chacma baboons in South Africa.
Specifically, we used data collected for a study on
juvenile development, consisting of focal animal
samples of 13 juvenile baboons from one of their
study troops (VT). Data were collected on, among
other things, the juvenile animals’ activity and their
proximity to other group members, and, using these
variables, we investigated whether we could observe
an example of the ecological fallacy. Basically, we
askeda simple, straightforwardquestion: are juvenile
baboonsmore likely to be foundplayingwhen theyare
in the vicinity of an adult female orwhen they are at a
distance from an individual in this age-sex class?
Whenwe aggregate the data in the standard way, our
analysis reveals a strong negative correlation be-
tween the average distance of juveniles from adult
females (log-transformed) and the proportion of
playful behavior in which they engaged (versus
resting behavior) (Fig. 2: black line and black dots:
r¼�0.60, P¼0.032, N¼ 13). This suggests, perhaps,
that juveniles need to be more vigilant when they are
further way from adults, and so they avoid activities
like play, and instead spend more time resting, an
activity during which they can remain vigilant.

When we run a logistic regression for each
juvenile monkey separately, however, we find that
12 of the 13 slopes are now positive, and that six of
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these relationships are statistically significant
(Fig. 2, grey lines). Only one individual displays a
significant negative relationship. When we conduct
our analyses at the individual level, then, we find
that most juvenile baboons show an increased
tendency to play when they are at a distance from
adults, perhaps because adults are not particularly
tolerant of playful juveniles, and move away from
juvenile playgroups, or because adults use aggres-
sion to actively increase the distance between
themselves and juveniles when the latter are play-
ing. In other words, real-world data can show
completely different patterns depending on the level
at which the analysis is conducted, and can lead to
inferences that directly oppose each other.

Simpson’s paradox
As described above, Simpson’s paradox (SP) is a

special case of the ecological fallacy that occurs when
the direction of a relationship is reversed completely
when data are analyzed at the individual level
compared the ecological level. As noted above,
although the reversal of the statistical relationship
in Simpson’s Paradoxmay occur due to differences in
values across groups (as was the case in Fig. 1C),
another common reason why it occurs is due to the
presence of a third variable that has a differential
influence on relationships at the aggregate versus
the individual level [see Ameringer et al., 2009;

Armistead, 2014; Blyth, 1972; Hintzman, 1980;
Pearl, 2014 for further description and analyses].

To illustrate this in concrete terms, imagine a
study of nut-cracking by chimpanzees, where the
central question of interest is the frequencywithwhich
different kinds of hammer (made of stone or wood) are
used to crack nuts. Data are therefore collected on
individual nut-cracking attempts, andmean values for
eachhammertypeare calculated (Table1). Inaddition,
we also note whether the chimpanzees have cracked a
small or a large nut (Table 1). When we examine the
cracking of small nuts, we find that stone hammers
haveahigher success rate thanwoodenhammers (0.97
vs. 0.89). Similarly, larger nuts are also more
successfully cracked by stone hammers (0.27 vs.
0.10). If the overall success rate of nut-cracking is
calculated, however, stone hammers actually have a
lower success rate than wooden hammers (0.76 vs.
0.81). In other words, the incidence of a given behavior
shownby individuals in each of a number of groups can
be consistently higher than those found in second
series of groups but, once aggregated (i.e., in this case,
combining nut size across hammer types to give a
single value for each hammer type), the overall
proportion observed in the combined grouping is
opposite to that found in the individual groups (and
vice versa, of course). To put this in terms of how this
might arise in the field, imagine that some of the
results are collected by Researcher A, who works on
several chimpanzee communities at a study site
containing only small nuts, while Researcher B
conducts her work on a number of chimpanzee
communities at a study site containing only large
nuts. In each local ecology, success is greater with
stonehammers.However, lookingacrossecologies, and
combining the results from Researchers A and B, the
chimpanzees perform better with wooden hammers.
This is counter-intuitive (orparadoxical) atfirstglance,
because the higher success rates for stone hammers
compared towoodenhammers for both small and large
nuts would suggest that when the data are combined
the overall success rate would also be higher for stone
hammers than forwooden onesHadwe concluded that
wooden hammers are amore effective tool on the basis
of the ecological level proportions, we would have
committed an ecological fallacy.

So, why exactly does this reversal occur? First,
notice that the sizes of the groups for each combina-
tion are very different, but such information is
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Fig. 2. The relationship between distance to an adult female
group member (log-transformed) and the proportion of time
spent playing (versus resting) for 13 juvenile baboons. Black dots
reflect individual aggregated (mean) values; the black line is the
OLS regression line through these points (Pearson r¼�0.60;
P¼0.032; N¼13). The grey lines are model predictions for each
individual monkey based on logistic regression (see text); only
one individual line had a negative slope.

TABLE 1. A Hypothetical Case of Simpson’s Paradox,
Using Success Rate of Nut-Cracking by Chimpanzees

Stone hammer Wooden hammer

Small nuts 340/350 0.97 400/450 0.89
Large nuts 40/150 0.27 5/50 0.10

Overall success 380/500 0.76 405/500 0.81
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ignored when fractions are calculated (Table 1). We
have larger sample sizes for small nuts being cracked
than for large nuts being cracked (800 vs. 200).
Moreover, relatively more small nuts are cracked
with a wooden hammer than with a stone hammer
(450 vs. 350), whereas the opposite is true for large
nuts, where relatively more large nuts are cracked
with stone hammers than with wooden hammer (150
vs. 50). Second, the third variable, nut size, has a
large effect on the success of nut cracking: success is
more strongly related to what kind of nut is being
cracked, than to what kind of hammer is being used.
Indeed, it appears that chimpanzees mostly use
wooden tools for small nuts and stone tools for large
nuts: wooden hammers are rarely used for the larger
and less common nuts (which probably is due to the
low success rate of the endeavour), whereas wooden
hammers are often used for small nuts (perhaps
because wooden hammers are more easily found, or
perhaps they require less effort to use than stone
hammers, and are thus slightly more energy-
efficient than stone hammers for this job) (Table 1).
Either way, the “paradox” arises because the stone
hammers are more often used to crack difficult nuts
with low success rates, whereas wooden hammers
aremore often used for easily-cracked nuts that have
high success rates. Aggregating the data to overall
success rate, results in a loss of this information, and
the relatively high occurrence of the stone hammers
and large nuts (and their attendant low success rate)
drives the overall success rate of stone hammers
down, whereas the relatively high occurrence of
wooden hammers and small nuts (with their associ-
ated high success rate) will drive the overall success
rate of wooden hammers up.

Thus, Simpson’s Paradox applies to data pre-
sented in contingency tables, like the above chim-
panzee example [and indeed it was originally
identified in tabular data presented in this way,
e.g., in studies on the gender admission bias at
Berkeley [Bickel et al., 1975] but see [Wagner, 1982]].
Yet, it also applies to other types of data as seen in
our baboon play example (Fig. 2) [for further
explanation of Simpson’s paradox and confounding
variables, see [Ameringer et al., 2009; Armistead,
2014; Julious & Mullee, 1994; Pearce, 2000; Pearl,
2014; Samuels, 1993]; see also Figure 1C and [Kievit
et al., 2013] for some examples using human
psychological studies].

As Kievit et al. [2013] argue, Simpson’s paradox,
although treated as a “rare statistical curiosity” in
the human psychological literature, may occur far
more frequently than we realize, at least partly
because we tend to be very bad at detecting the
paradox when we observe it. Generally speaking,
humans are not adept at reasoning with respect to
more than two variables simultaneously, nor are we
very good at recognizing conditional contingencies; it
is one of our “inferential blindspots” [e.g., Dawid,

1979; Fiedler et al., 2003; Kr€amer & Gigerenzer,
2005; Kievit et al., 2013]. An experimental psycho-
logical study by Fiedler et al. [2003], for instance, on
the understanding of Simpson’s paradox among
students, found that participants still drew incorrect
conclusions based on the aggregated level in experi-
mental situations where all relevant factors were
made salient with varying degrees of explicitness,
and even when all information was made entirely
explicit (lower level percentages, higher level percen-
tages, how the differences arise, e.g., in our case,
telling them of the differential success rate of wooden
and stone tools depending on nut size). Consequent-
ly, we can often draw incorrect causal inferences from
aggregate data, even under circumstances when we
have good knowledge of the relationships that exist
at the lower levels [Kievit et al., 2013] (as could be the
case with the hypothetical example of the chimpan-
zees above).

Lower Level Relationships Between Variables
One final way in which data aggregation creates

as many problems as it solves is that it obscures our
ability to detect more complex relationships, like
statistical interaction effects. Assume, for instance,
that the hypothetical relationship between grooming
and aggression described above for baboons depends
critically on a female’s current reproductive state.
More specifically, imagine that the negative rela-
tionship plotted between aggression and grooming is
found only if the female is in the fertile stage of her
menstrual cycle, and has a swollen perineal skin,
whereas the relationship is non-existent for females
that are not swollen (see Fig. 1D for schematic
overview of such a statistical relationship). Calculat-
ing just the aggregate measures would not allow any
investigation of this statistical interaction. For
instance, aggregating the mean amount of time
spent in each possible reproductive state (swollen,
pregnant, lactating, and cycling) would produce the
percentage of time that a given female spends in a
swollen state, but that is not the information sought
here. Moreover, sampling each female at a similar
rate in both reproductive states (each female was
observed in a fertile state X number of times and in a
non-fertile state for Y number of times), would result
in the aggregate measure being similar for each
monkey (X/(XþY)), again preventing any assessment
of the relevant interaction. Put simply, once data are
aggregated, relationships that exist only at the lower
level cannot be tested; it is no longer possible to see
them in the data, and so they cannot be pulled out of a
statistical analysis. One straightforward way to deal
with this problem is to follow the strategy used in the
real-life baboon example above: calculate separate
regressions for each individual. It would be prefera-
ble, however, to use all the data simultaneously and
run an analysis that can account for both the
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differences between individuals and the difference in
reproductive status within individuals. One highly
effective way to do this is by using multi-
level modeling techniques and, in the next section,
we provide a brief conceptual guide to their use.

A Potential Solution: Multi-level Modeling
Multi-level modeling is often used as a solution

to the ecological fallacy in sociology and epidemiol-
ogy [e.g., Goldstein, 2011; Hox & Kreft, 1994].
These statistical techniques are also known as
mixed models, random coefficient models, random
effect models, hierarchical models, and nested
models. In the following, we will use the term
multi-level modeling, and we will refer to these as
GLMM (Generalized Linear Mixed Models). These
are models that can accommodate nested data and
deal with several distinct error distributions. Read-
ers should, however, be aware that, within this
class of methods, models can vary widely, for
example in how they estimate parameters (e.g.,
Maximum Likelihood, Restricted Maximum Likeli-
hood, Iterative Generalized Least Squares). It is
also important to stress that GLMM’s are not a
‘magic bullet’ or a panacea for all statistical ills:
they might not accommodate all sampling schemes,
for example. If a given sampling scheme is of poor
quality, and produces inconsistent, noisy data, then
it will simply be a matter of “garbage in, garbage
out”, regardless of the sophistication of the GLMM
approach (or any other statistical technique) used.
Similarly, if a sequential, temporal pattern in the
data is disregarded, then invalid inferences may be
drawn when such temporal structures are not taken
into account even if observations are nested within
individuals in a GLMM. GLMMs can also be
complex to interpret and come with several
assumptions of their own which should be borne
in mind [for reviews see Bolker et al., 2009; Zuur
et al., 2009 for example].

These caveats aside, multi-level models have
achieved greater prominence in recent years [Jan-
son, 2012], and an increasing number of primatologi-
cal studies now use them [to give just a few examples:
obeservational data Clarke et al., 2009; Gomes et al.,
2009; Engelhardt et al., 2012; Koyama et al., 2012;
Henzi et al., 2013, experimental field data: Wheeler,
2010; Ducheminsky et al., 2014; Price & Fischer,
2014], not least because they are an ideal way to
combat potential problems of pseudoreplication.
Waller et al. [2013] explicitly recommend the use of
multi-level models (GLMM) as a way to combat
pseudoreplication in experimental studies of primate
communication. Multilevel models can do much
more, however, than simply combat issues related
to pseudoreplication.

First, multilevel models are well suited to deal
with problems of the ecological fallacy (and

Simpson’s Paradox), by controlling for possible
clusters within datasets due to individual variability
and/or the influence of third variables (provided that
these have been measured). Second, these powerful
techniques allow researchers to extract the maxi-
mum amount of information from their data and, as
indicated above, investigate more complex relation-
ships than is possible with data based on aggregate
values. It would be a mistake to think that multi-
level models are useful solely because they simply
avoid particular kinds of analytical errors. Rather,
they can be exploited in a number of positive and
creative ways that permit deeper and more thorough
interrogations of data.

Our intention here, then, is to explain how and
why multi-level modeling deals effectively with
ecological fallacies and the other drawbacks of data
aggregation, and then to highlight a few of the
positive advantages that multi-level models offer to
the analysis of behavioral datasets, once we recog-
nize their hierarchical nature. Our description of
these models is—quite intentionally—more of a
“sales pitch” than a “how-to” guide or instruction
manual. There are a number of excellent books and
papers available, all of which do a much better job
than we can offer here, and we urge interested
readers to seek out these resources and follow the
guidance offered therein [e.g., Bolker et al., 2009;
Gelman & Hill, 2006; Hox, 2010; Raudenbush &
Bryk, 2002; Snijders & Bosker, 1999, 2012; van de
Pol & Wright, 2009; Zuur et al., 2009].

One major reason why multilevel modeling has
gained ground in behavioral research is because
there are now a number of statistical packages that
allow one to implement multilevel techniques easily
and efficiently, including MLWin [Rasbash et al.,
2000], SAS [Singer, 1998; Littell, 2006], SPSS mixed
package [IBM SPSS Statistics, 2011], Stata [Stata
Press, 2005], and R [R Development Core Team,
2008] lme package, and later versions such as lme4
[e.g., Pinheiro et al., 2007] and MCMCglmm [Had-
field, 2010]. Computing power is no longer a limiting
factor on behavioral researchers’ ability to conduct
sophisticated statistical analyses, and some software
packages, like R [R Development Core Team, 2008],
are open-source and free to access. There is no reason
not to take advantage of themore powerful statistical
techniques now on offer. To drive this point home, we
also want to highlight the way that these models can
use the full range of data that a researcher has
available, rather than having to rely on aggregate
statistics, which is a key advantage in our view.
Modern statistical packages therefore yield substan-
tially more statistical power as a consequence [for
reviews on power and multilevel models see: Maas &
Hox, 2005; Snijders, 2005; Scherbaum & Ferreter,
2009].

So, how do multi-level models allow us to combat
the problems created by data aggregation? To take a
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simple case, they do so by nesting data points within
individual animals, which takes into account indi-
vidual variability without any loss of data. In the
simplest case, a “random-intercept” model is used,
where the data for each animal is fitted with its own
intercept. In such cases, the statistical model
“knows” that the different data points belong to the
same individual thereby accounting for the non-
independence in the data [although some argue that
it achieves this only partially: Schielzeth & For-
stmeier, 2009]. Random intercept models recognize
that individuals will show variation with respect to,
say, the overall frequency with which they perform a
given behavior, but they make the simplifying
assumption that the direction and strength of the
relationship is identical for each individual. That is,
they take the form shown in Figure 1C: if we were to
extend the line drawn through each individual back
to the y-axis, they would all hit the axis at a different
point (which is related to the predicted mean
frequency with which the behavior is displayed by
that animal when the X-variable is set to zero), but
nevertheless all the relationships would be negative,
and the lines would be parallel because the slopes
would be similar. Of course, as we saw in our real-
life example (Fig. 2), the relationships shown by
different individuals need not be at all similar: most
of our juvenile baboons displayed a positive relation-
ship, but these differed quite substantially in
magnitude, plus there was one odd individual that
showed a negative relationship. With a dataset like
this, an intercept-only model, which constrains all
the data points to lie on the same slope, would not
give a very good fit [see also Schielzeth & Forstmeier,
2009].

Mixed models, however, can easily be extended
to incorporate a random slope as well as a random
intercept, so that the nature of the relationship is
allowed to vary for each individual, thus accounting
for a second kind of variability. If we apply such an
analysis to the juvenile baboon data (Fig. 2), there is
a significant positive overall effect of distance on the
likelihood of playing when using a random intercept-
only model (binomial mixed model parameter esti-
mate (�SE)¼0.90 (�0.063); P< 0.0001, AIC
¼2697.9). When the data are allowed to vary not
only in their intercept, but also in their slope, there is
an overall significant positive effect (0.61 (�0.017);
P¼ 0.0002, AIC¼ 2660.6), albeit weaker, but the
analysis also reveals that there is large variation in
the slopes between the individuals. That is, including
a random slope improves the model fit relative to the
intercept-only model, which we can see by consider-
ing the difference in the Akaike Information Criteri-
on (AIC) values. Here,DAIC¼ 37.3. The AIC value is
a measure of model fit, based on the loglikelihood of
the model where, in this case, lower values indicate a
model with a better fit to the data [Akaike, 1974;
Burnham & Anderson, 2002, 2004; Bolker et al.,

2009; Symonds &Moussalli, 2011; Zuur et al., 2009].
Such an analysis is highly informative, because it
allows one to conclude that, overall, across individu-
als, the relationship between X and Y is positive
(juveniles who are further away from adult females
tend to displaymore play behavior), but it also points
to the high variability seen between the juveniles,
which may be of interest in its own right. It is
important to note, however, that this variationmight
change if we were control for additional individual
factors, such as juvenile sex, age, maternal domi-
nance rank, or season. Here, we performed a rather
quick-and-dirty analysis to demonstrate that a
multi-level model produces results that correspond
more closelywith the series of individual regressions,
rather than with the negative relationship found
using aggregate data. Indeed, a thorough analysis
would require the data to be exploredmore fully prior
to beginning any analysis and would consider, for
instance, the distribution of the dependent variable
and correct for any possible overdispersion [e.g.,
Bolker et al., 2009; Molenberghs et al., 2007; Zuur
et al., 2009]. It would also be advisable to check the
residuals of any analyses (for the possibility of
heteroscedasticity, for example). It is also possible
to bootstrap the results or employ another technique
to check if the results are upheld consistently [e.g.,
MCMCglmm: Hadfield, 2010]. Other authors have
outlined the steps that can be followed to check the
results obtained from each model run [Bolker et al.,
2009; Zuur et al., 2009].

Generally speaking, then, while the random
intercept controls for systematic error variance as
a consequence of group membership, random slopes
model systematic error variance as a consequence of
the attributes associated with belonging to a partic-
ular group (or individual, if we have observations
nested in individuals). In addition, models that
combine both a random slope and a random intercept
can control for non-independence even more effec-
tively than intercept-only models, and are argued to
be preferable for this reason [Schielzeth & Forstme-
ier, 2009]. For examples of random effects models
and more detailed explanation, we refer readers to
the existing literature [e.g., Bolker et al., 2009;
Gelman & Hill, 2006; Gillies et al., 2006; McCulloch
& Neuhaus, 2001; McCulloch, 2006; Pinheiro &
Bates, 2000; Raudenbush, 1994; Snijders & Bosker,
1999, 2012; Raudenbush & Bryk, 2002; Verbeke &
Molenberghs, 2009; Zuur et al., 2009].

The advantages of multi-level models for obser-
vational data should be readily apparent from the
above explanation. The same is also true for
experimental designs. In what can be viewed as an
extension ofWaller et al.’s [2013] paper (even though
it was published four years earlier), van de Pol &
Wright [2009] demonstrated that mixed models can
be used very effectively to separate between- and
within-individual effects in experimental designs, at

Am. J. Primatol.

Data Aggregation and the Ecological Fallacy / 735



least in part by solving the problems associated with
the ecological fallacy. Van de Pol & Wright [2009]
suggest that the use of such models is particularly
appropriate for studies relating to reproductive
timing, sex allocation, and anti-predator behavior
because, for each of these topics, different predictions
arise from one’s hypotheses depending on whether
they are focused on the within-subjects level or the
between-subjects level. Van de Pol and Wright’s
[2009] paper therefore demonstrates the positive
contribution that multi-level modelling can make to
the analysis of behavioral data, and not just the
“negative” contribution of ensuring any erroneous
inferences are kept under control. For example,
applying this logic andmethod to the example shown
in Figure 1C, one could simultaneously assess the
relationship between the amount of grooming an
individual receives and the amount of aggression
displayed (the within-individual effect), as well as
the relationship between the average amount of
grooming received and the amount of aggression
displayed (the between-individual effect).

“Scaling up”: Adding Further Levels and
Longitudinal Data

Another positive—and very useful—aspect of
modern multi-level techniques is that they allow for
the classification of many different levels of groups.
For example, the behavior of the juvenile baboons in
the sample analyzed above not only can be nested
within individuals, but also within social cliques,
which could then be further nested into different
groups (and if they were gelada or hamadryas
baboons, rather than these rather unexciting chacma
baboons, we could further nest the data within even
larger groupings, such as clans and herds).

Investigating membership in more than one group
at a time

Multi-level models can also accommodate the
social reality that an individual is often a member of
many different groups, whichmay ormaynot overlap
in membership (known as “cross-classified” models).
For example, in a school context, a student may
attend a biology class with a certain group of people,
but also attend a chemistry class with another group
of people, who do not all take the biology class. If it
was necessary to predict this student’s grades in
biology based on some aspect of the teacher’s
instructional methods then, because the teacher
instructs some of the student’s fellow pupils but not
others, cross-classified models could be used to
examine the independent influence of the teacher
on the student’s grades, as well as account for the
influence of overlap in the composition of the class. It
is also possible to specify multiple groups with non-
overlapping membership, where each level might
differentially help to predict grades. At first sight, it

might seem that multiple group membership is rare
and hence not relevant to non-human animals. In
fact, there are many cases where multiple group
membership occurs and would be useful to model.
One obvious example is those species that show
fission-fusion dynamics, where animals display
flexible sub-group membership across time. Cross-
classified models can help tease apart the ways in
which sub-group membership influences foraging
and social strategies based on the presence or
absence of particular individuals or particular age-
sex classes.

Evenwithin stable social systems,multiple group
membership may occur: an animal may form an
alliancewith othermore powerful individuals in order
to increase the chances of mating success, but forage
close to those that are more subordinate in order to
increase its foraging success. Thus, even among non-
human animals, “group”membership does not neces-
sarily overlap completely, and multi-level techniques
can allowus tomore clearly differentiate the effects of
membership in one group versus another inways that
are would not be possible using simple correlational
techniques based on aggregate data.

Modeling who collected the data
Another, much more pragmatic, application of

multi-level modeling that fieldworkers in particular
might find useful is to specify the identity of the field
assistants who collect the data, and nest observa-
tions within those individuals. In field settings,
standard inter-rater reliability procedures (e.g.
Cohen’s kappa, Krippendorf alpha [Hayes & Krip-
pendorff, 2007] often are not feasible because field
assistants rarely collect exactly the same data on the
same animals at the same time (i.e., they usually do
not overlap in their data sampling). For example,
over the course of the long-term De Hoop baboon
project, data were collected by at least 12 different
people over a period of 10 years. Modeling non-
independence using multi-level techniques can be
very useful in such circumstances. For instance, a
multi-level modeling approach allows one to disen-
tangle the effects of field assistant attributes (e.g.,
perhaps some field assistants and researchers
consistently over- or underestimate distances) from
other factors potentially influencing observations
(e.g., perhaps weather conditions affect estimates of
distance). Aggregating the data obscures the poten-
tial effect of influences like these and, as with our
discussion of interaction effects above, prevents us
from considering whether factors, like researcher
identity, have any influence on our results, and
whether these interact with other influences, such as
climatic factors.

Working with sequential data
One final advantage of multi-level models that

deserves a brief mention is that they allow us to
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retain the temporal sequencing of repeatedmeasures
within longitudinal data. Repeated measures are a
commonly recognized source of non-
independence (and often result in autocorrelation).
Such repeated measures represent one of the main
reasons why multi-level models are used; they allow
for the construction of random effects that take
account of several data points for each individual
over a period of time. On occasion, however, wemight
well be interested in the nature of the relationships
that exist between these repeated measures (i.e., we
may want to know something about whether a
certain behavior occurs every day, or whether it
tends to happen in bursts over several days followed
by a periodwhen it does not occur at all). If wewere to
aggregate to a mean rate of occurrence per unit time
for each individual, we would lose this sequencing
information, plus we again become vulnerable to the
ecological fallacy.

The simplest way to deal with this issue is to
include “time” as a fixed factor in amulti-level model,
and use this to account for patterns in our data.
Alternatively, we could model time via additional
random effects in a multi-level model [see Goldstein
et al., 1994 for example] or we could use multi-
level time-series models [for example, random effects
Cox regression, frailty models, or multi-level Cox
regression models; Mills, 2011]. All these models
help to ensure we draw the correct inference when a
time component is present in the data, because they
retain the actual frequency of behavior as it was
distributed across a given time period. These models
thus allow us to make inferences over the long-term,
while taking into account variation over that period,
without data loss. In some cases, we can even make
future predictions based on an observed time series
[forecasting models, see Box et al., 2013].

CONCLUSION
Although problems relating to data pooling, like

pseudoreplication, are well known in the behavioral
literature, and researchers now make concerted
efforts to avoid such statistical errors (but see
Waller et al., 2013 who discuss this problem in
primate communication research), one of the
solutions proposed—data aggregation—ironically
creates statistical problems of its own. Despite
the fact that aggregation seems both intuitive and
straightforward when analyzing data, any proce-
dure that reduces individual measures to a single
data point results in both an overall loss of
available information and the rather more insidious
problems of the ecological fallacy and Simpson’s
paradox, both of which can result in false inferences
being drawn.

Although this survey has been necessarily brief,
we hope that by highlighting the problems that can
arise via data aggregation and pointing out some of

the positive advantages ofmulti-levelmodels, wewill
both convince more people to begin using such
models, as well as encourage those who already do
so to exploit them to even greater advantage. At the
same time, it is important to acknowledge that the
multilevel approach is not the holy grail of data
analysis. In some cases, an aggregated value may be
preciselywhat is required to test a specific prediction,
while in others small sample sizes or insufficient data
at each level may preclude their use (though some
options to combat these also exist such as
MCMCglmm [Hadfield, 2010]). In many cases,
however, aggregation may prove to be unnecessary
and the research questions asked would benefit from
a multilevel approach. Indeed, our survey of prob-
lems and solutions relating to the ecological fallacy
suggests that, in many cases of behavioral observa-
tional studies, our understanding of the behavior
would be further advanced by the use multi-
level modeling. These techniques therefore offer
genuine promise for more sophisticated and creative
forms of hypothesis testing. The speed and ease with
which suchmodels can be constructed and run, using
dedicated software, more than compensates for the
time needed to learn such techniques. Given the
immense amount of time and energy required to
collect good-quality field data, the use of techniques
that allow field researchers to exploit all their data to
its fullest potential are undoubtedly preferable to
less powerful methods that require some very hard-
earned data simply to be discarded.
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